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1 Abstract

1.1 Purpose

Chromosomal structural variations (SVs) occur within the genome and can
have a decisive bearing on phenotype. While most early efforts to charac-
terize genetic diversity focused on single-nucleotide polymorphisms (SNPs)
and shorter indels, with the advent of next-generation sequencing techniques,
attention has been given to these longer SVs. While long read sequencing
(reads >1000bp in length) has proven instructive in the detection of these
SVs, short-read sequencing is still the dominant sequencing technology due
to price and availability of sequencing machines. Furthermore, there are
some sequencing applications where only short reads can be attained. Us-
ing a golden-set of structural variants attained from calling upon long reads,
structural variant calling for short reads can be tuned and improved.

1.2 Methods

We evaluated three main approaches for calling structural variants on short
reads. The first approach was to improve upon split read calling, the defacto
approach for calling short reads. The second approach was to focus on the
alignment phase, and appraise how mapping the reads could effect the effi-
cacy of later SV calling. The final approach trialled was to first use denovo
assembly to combine reads into contigs which provide more context to the
aligner. We evaluated these approaches using a golden-set provided by NIST
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Figure 1: Frequency of different mutations

on the publicly accessible HG002 Genome in a Bottle. The tool Truvari was
used to score the output of the structural variant callers.

1.3 Conclusion

Further research needs to be carried out into alignment parameters to max-
imize accurate detection of structural variants. Creating a split-read caller
that challenges existing industrial or academic tools proved to be beyond the
scope of this project. Denovo assembly appears to be a promising approach;
already it outperforms existing standards for long insertions.

2 Introduction

2.1 Structural variants

Structural variations (SVs) include insertions, deletions, duplications, inver-
sions, and translocations of DNA segments longer than 50bp in length. Since
these structural variants can span single exons or larger genomic regions, they
bear significant impact on phenotype. Due to their large size, they account
for more of the nucleotide sequence variation than SNPs (1% for SVs and
0.1% for SNPs); indels < 10kb in length are the second most common mu-
tation (see figure 1).

We detect these structural variants at the end of a data pipeline that
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starts with sequencing (converting the biological sequence into a sequence
of bases known as a read), proceeds to alignment/assembly (comparing the
reads to a ”reference genome” and deciding where they belong in the DNA
sequence) and terminates with calling SVs, based on the percieved difference
between the subject genome and the reference genome.

However, SVs have received less attention since they are harder to de-
tect with traditional sequencing technologies. Initial commercial reads were
shorter than 50bp; this substantially limits the ability of algorithms to call
SVs. It is impossible to call a repeat, such as a copy number variation, that
is longer than the read length for the sequencing run and most SVs occur in
highly repetitive regions of the genome [9].

Today paired-end reads from 100bp-300bp are employed commercially [5].
This increase in sequencing length opens the possibility of detecting shorter
SVs (<300bp in length) using cheaper commercial reads. However, even at
200bp there is still the challenge of aligning reads that span variants, since
there is little context to place the matching regions of the read to the reference
genome.

2.2 Next generation sequencing

The advent of long-read next-generation sequencing (NGS), offered by com-
panies like Oxford Nanopore and PacBio, substantially improved resolution
of long structural variants. These long-reads are sometimes 1000s of base
pairs in length and with this additional context, it is easier to align them to
the correct region of the reference genome. SV callers which operate over long
reads have proven highly effective at calling structural variants on synthetic
data [6].

2.3 Golden-set

Unlike with synthetic data, it is impossible to know with certainty whether
the calls made on real human genetic data are accurate. To combat this,
publicly accessible test sets, such as the NIST Genome in a Bottle, are used
as the bases for reproducible tests for structural variants using high coverage
sequencing data [11]. By combining high confidence SV calls from different
sequencing technologies and SV calling algorithms, a golden-set of SVs is
produced. This golden-set can be used as a reference point for the output of
new callers.
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2.4 Relevance of short reads

Long reads provide higher resolution sequencing data, especially error cor-
rected long reads [7]. However, these long reads are prohibitively expensive
for many commercial applications, and cannot be used for all sequencing ap-
plications. In oncology, SVs are thought to contribute to oncogenesis through
a range of mechanisms, and are thought to be underappreciated mutational
drivers [2]. Liquid biopsies have been shown to be effective diagnostics tests
for cancer and require sequencing cfDNA circulating in the blood stream [3].
cfDNA was found to have an average fragment length in humans of 144bp [10],
which implies that only short reads and short read SV callers will be effective
in this situation.

2.5 Split-read callers

SV callers for long and short reads have focused primarily on split reads,
read depth and read pairs to provide signal about structural variation. Split
reads occur when reads are aligned partially to one region and partially to
another. Their occurrence can suggest the presence of any kind of structural
variant. Combining information from multiple split reads can be used to
make a high confidence call. Read depth refers to the number of reads aligned
over the same genomic region. In repetitive regions, read depth can be used
to ascertain the copy number of a repeat, which as discussed earlier, can
be challenging with short reads. These two approaches underpin existing
commercial SV callers, such as Manta [1].

Split-read callers for short reads are good at detecting deletions, but
comparatively poor at detecting insertions. This is the case for any approach
which relies purely on reference guided assembly as an upstream step to the
caller, since any read which is spanned by the inserted region cannot be
correctly aligned. Compared to long reads, existing short reads SV callers
pick up a maximum of 49% of deletions and 11% of insertions, at 30-40x
coverage (see figure 2). The majority of the missing variation appears to
lie between 50-500bp, which perfectly overlaps with the average short read
length used for sequencing.
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Figure 2: Recall of different sequencing technologies

2.6 Denovo assembly

While the majority of callers rely on the methods detailed above, some re-
search has been carried out into alternative ways to call SVs. For instance,
combining reference and denovo assembly has been used to phase structural
variants. Denovo assembly has also been used to generate high quality con-
tigs (long sequences formed by merging overlapping reads) which are then
reference aligned. This approach does sacrifice some signal, squashing all
read information which might total to over 30x coverage, down into contigs
which might be 1-3x coverage. Nonetheless, these contigs with their extra
length have high degrees of context which improves the quality of alignments
and therefore the SV calls made [4].

3 Materials and methods

Three approaches were explored as candidate SV callers for short reads.
While SVs include inversions, translocations and duplications, for the pur-
pose of this paper only insertions and deletions were assessed.
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3.1 NIST golden-set

To score the performance of the SV callers developed, we use a golden-set of
calls assembled from a wide range of sequencing technologies and callers. We
chose a golden-set that includes calls made on long reads and linked reads,
to ensure that it is more comprehensive than the more limited calls possible
with short reads. The golden-set used was the NIST SV golden-set prepared
for the HG002 genome. The HG002 genome belongs to the Ashkenazim son,
one of the genome donors for the Genome in a Bottle project. The callset
contains 9719 structural variants in high confidence regions. Of these SVs,
there are more deletions (56%) than insertions, and over 50% of the deletions
and insertions are shorter than 200 bps.

Bounds Deletions Insertions
50 ≤ SV < 100 1460 1501
100 ≤ SV < 500 2034 2704
500 ≤ SV < 1000 208 485
1000 ≤ SV < 10000 523 729
10000 ≤ SV 36 25
Total 4261 5444

Table 1: NIST golden-set by length

The majority of structural variants occur in repetitive regions, but this
golden-set has undergone a large amount of filtering and non-random selec-
tion. We investigate whether the majority of our repeats have occurred in
repetitive regions by masking our golden-set against a known set of repeats,
computing an intersection of our golden-set against the simpleRepeats track
from UCSC, with 100 bases of intersect padding.

The golden-set contains more deletions in repetitive regions than inser-
tions. This is likely due to increased difficulty of detecting insertions being
compounded by the added complexity of aligning reads that span repetitive
regions.

3.2 Baseline: Novoalign and Manta

The NIST golden-set provides a testing interface, but we must select an
existing caller to use as a baseline, to calibrate our methods against and
score their success. We selected Manta, an industrial standard SV caller
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Bounds Deletions Insertions
50 ≤ SV < 100 688 294
100 ≤ SV < 500 916 177
500 ≤ SV < 1000 9 2
1000 ≤ SV < 10000 101 0
10000 ≤ SV 33 0
Total 1747 473

Table 2: NIST golden-set intersected with known repeats

built by Illumina, for this purpose. Manta is designed to operate optimally
using the information provided by their HiSeq paired-end read sequencers.
Manta takes aligned reads as input; for the baseline, we used Novoalign, a
popular industrial aligner.

3.2.1 Manta

Manta has two main operating steps: candidate detection and filtering.

Candidate Detection In this first phase of operation, Manta seeks to find
as many candidate SV sites as possible. It does this by looking at split-reads,
paired-end reads, and alignment information over aligned reads. It then keeps
a record of potential ”break-end” sites; genomic coordinates where SVs start
or end.

Filtering Manta’s second phase ensures that only high confidence SVs are
reported. It uses an assembly step, which coalesces reads from a potential
break-end point into a longer contig which is then aligned with parameters
sensitive to an existing structural variant. A number of probabilistic tests
are used to score whether such a structural variant is likely, and if all filters
are passed, then the SV is reported.

3.2.2 Performance

Manta is one of the callers used to form the NIST golden-set. Therefore,
we expect the SVs called by Manta to have a high specificity against the
golden-set, since the golden-set is a super-set of these Manta calls. Manta
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performs well on the golden-set, yielding 60% recall on deletions, but only
23% recall on insertions. Precision is high for both.

Deletions Insertion Total
Calls in golden-set 4261 5444 9705
Calls made by Manta 2689 1272 3961
Recall of Manta calls 0.600 0.225 0.388
Precision of Manta calls 0.952 0.964 0.956
F1 of Manta calls 0.736 0.365 0.522

Table 3: Manta callset

Length Manta demonstrates good recall on short and median length dele-
tions (100-500). It has very low recall for insertions longer than 50bp.

Bounds Deletions Insertions
50 ≤ SV < 100 0.61 0.499
100 ≤ SV < 500 0.734 0.173
500 ≤ SV < 1000 0.177 0.016
1000 ≤ SV < 10000 0.198 0
10000 ≤ SV 0.552 0
Total 0.600 0.225

Table 4: Manta recall on deletions and insertions by length

This is likely because of how difficult it is to align short reads around
insertions. Insertions will necessarily lead to clipped reads; along with paired-
end information, extracting break-ends from clipped reads is the only way to
detect insertions with aligned short reads.

3.3 Approaches to improving short read SV calling

3.3.1 Darwin: Improvements to alignment

3.3.2 Split read caller

The first method used looked to improve upon existing split read callers.
Darwin is configured to yield extra information about deletions. During
the alignment phase it will merge split reads together, to make detection
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of deletions via long alignment gaps easier. It also uses a dual-affine gap
function, which should be more sensitive to long structural variants than a
single affine gap.

By combining this information with the techniques mentioned above that
Manta employs (break-end detection), we can call deletions based on short
read alignment information. Our split read caller uses paired-end reads, split
reads and an assembly phased inspired by Manta to refine the break-end
points.

3.3.3 Denovo assembly for contigs

The primary issue with alignment of short reads for the later detection of
structural variants is that the sequence that matches between read and refer-
ence is the issue of ”vanishing score”. The recurrence relation that underpins
the Smith-Waterman algorithm relies on accruing large scores in matching
regions which are then slowly depleted in regions containing edits. These
matching regions are referred to as ”context” for the regions containing the
structural variant.

Short reads lack the context required to correctly align across structural
variants. They either align partially with clipping or not at all. It is then left
to the caller to attempt to combine the fragmented pieces of information that
emerge from the alignment phase into evidence for structural variants. This
process under-utilizes the power of the alignment phase, failing to capture all
the information that can be gleaned from the relationship between the reads
themselves.

One potential avenue for improvement here is to assemble contigs via
unbiased denovo assembly using the short reads, and then align those longer
assembled contigs to the reference genome. The advantage of this approach
is that the generated contigs carry more context, and are easier to align to
the reference genome (see figure 3).

Furthermore, the relationships that emerge from the assembly process,
such as the DeBruijn graph used to connect overlapping reads can be used
to guide the calling process. Furthermore, denovo assembly can utilize all
the extraneous information that accompanies NGS reads; paired end infor-
mation (distance between paired reads) including long range pairings, that
can substantially improve the quality of the eventual assembly.

Any structure in the DeBruijn graph that resembles a ”bubble”, where
two paths through the graph eventually reconnect, is suggestive of a het-
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Figure 3: Alignment of contigs via denovo assembly

erozygous variant, where one allele carries the variation. This information
can be exploited for both haplotyping and calling variants. If the Debruijn
graph can be further extended via coloration, then handling noisier bubbles
(where one allele might connect to another region of the graph) becomes
possible. However, graph coloration adds some overhead to the assembly
memory requirements and can make certain efficiencies impossible, such as
the use of a bloom filter to reduce memory constraints [4] [8].

An extension implemented to the pipeline discussed above was to search
the Debruijn graph for simple bubbles; diamond structures in the graph,
where the difference in length between the two paths was over 50bp in length.
Once these structures were found, ”super-contigs” were generated that traced
both paths through the diamond. These super-contigs were aligned, and the
same SV calling algorithm was used to look for insertions and deletions.

4 Results

4.1 Darwin: Improvements to alignment

One vector for improving SV calling, is to improve the stages upstream of
SV calling. Improving the quality of the alignments produced by the aligner
used by an SV caller, and ensuring that the maximum amount of useful
signal reaches the SV caller should improve the ultimate recall/precision of
the caller.

A number of improvements were made to Darwin to attempt to improve
alignment quality, including a dual-affine gap and merging of split-read pairs
that suggested deletions. Some meta-data needs to be added to Darwin to
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test it directly with Manta, but there is some evidence that given current
parameters, that Darwin might under-perform Manta as a aligner prior to
calling.

Clipped reads provide a useful metric for evaluating useful signal passed
from aligner to SV caller. Correct alignment around insertions and dele-
tions will produce clipped reads at a higher rate than alignments spanning
indels/SNPs. Therefore, we expect that an aligner that is sensitive to struc-
tural variants would align a high fraction of clipped reads around known
structural variants. Below we identify the percentage of clipped reads that
overlap with structural variants.

Novoalign Darwin
Alignments 807167278 364342839
Clipped alignments 1612687 143730467
% alignments clipped 0.2% 40%
Clipped aligns. in HC regions 1514008 122464719
Clipped aligns. in HC overlapping SVs 13603 296913
% clip. aligns. overlapping SVs in HC 0.8% 0.2%

Table 5: Clipped reads overlapping SVs

Darwin produced 20x more clipped reads than Novoalign, but fewer of
those clipped reads end up aligning around known SVs. This percentage
only considers reads that have aligned in the high confidence region laid out
by the golden-set. These results suggest that further tuning of the Darwin
parameters might be required to align with sensitivity to SVs.

4.2 Split-read caller

Our improved split read caller performed poorly compared to Manta. The
recall attained on deletions was 2x worse than Manta, and the precision was
also roughly 2x worse than Manta. This was roughly the case at all SV
lengths.

Given the attention that this approach has been given already, both in
industry and academia, we decided that this approach was unlikely to yield
novel results. Furthermore, given that Manta, the de-facto standard for
split read callers, performed so poorly on insertions, we believed that an
alternative approach might yield more impressive results.
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Deletions
Calls in golden-set 4261
Calls made by split-read caller 2490
Recall of split-read caller calls 0.205
Precision of split-read caller calls 0.426
F1 of split-read caller calls 0.277

Table 6: Split-read callset results

4.3 Aligned contigs via denovo assembly

4.3.1 Assembly quality

Before considering alignment and calling, a high quality denovo assembly had
be generated in a reasonable time on lab hardware. As discussed above, Abyss
was chosen for this; it uses a bloom filter (probabilistic hash set) to restrict
the memory usage. The output of the assembly of the HG002 short reads
was good, with an N50 of 29274 and an L50 of 27500. The total number of
bases contained by the assembled contigs was 2.78e9. Given that the contigs
are high confidence, this loss of coverage could be worth the trade-off for the
high confidence context gained.

4.3.2 Calling

Denovo assembly is the most promising approach employed for structural
variant detection. It performs poorly for short length structural variants but
performs better than Manta for longer variants, both insertions and deletions.

Deletions Insertion Total
Calls in golden-set 4261 5444 9705
Calls made by Manta 3718 2633 6351
Recall of Manta calls 0.446 0.227 0.322
Precision of Manta calls 0.505 0.469 0.490
F1 of Manta calls 0.474 0.306 0.389

Table 7: Denovo assembly callset results

Investigating these results for recall and precision at different lengths. It
performs worse than Manta for short length structural variants but performs
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better than Manta for longer variants, both insertions and deletions. The
recall shown below trumps Manta for all insertions sizes over 100bp. The
precision for these longer insertions was also high, at over 0.94 for all lengths
over 100bp.

Bounds Deletions Insertions
50 ≤ SV < 100 0.547 0.476
100 ≤ SV < 500 0.561 0.187
500 ≤ SV < 1000 0.398 0.206
1000 ≤ SV < 10000 0.347 0.157
10000 ≤ SV 0.034 0
Total 0.519 0.264

Table 8: Denovo assembly callset recall

As discussed above, diamond ”super-contigs” were generated and then
aligned for SV calling. Combining the results of these two steps together
yields a final F1 score of 0.433, compared to 0.522 for Manta. While only
2000 of these super-contigs were found, the precision of the calls made on
them was especially high for long insertions, over 0.9 for all lengths longer
than 100bp.

Bounds Insertions
50 ≤ SV < 100 0.308
100 ≤ SV < 500 0.944
500 ≤ SV < 1000 1.000
1000 ≤ SV < 10000 0.991
10000 ≤ SV 0
Total 0.469

Table 9: Diamond supercontigs precision

Isolating the performance of our contig caller (CC) against Manta for
insertions only, and removing all calls shorter than 1000bp, we see that this
approach performs substantially better for this use case.
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Num calls Recall Precision F1
Bounds CC Manta CC Manta CC Manta CC Manta
100 ≤ SV < 500 531 487 0.187 0.173 0.951 0.963 0.312 0.293
500 ≤ SV < 1000 100 8 0.206 0.016 1.000 1.000 0.341 0.032
1000 ≤ SV < 10000 117 0 0.157 0.000 0.991 0.000 0.272 0.000
10000 ≤ SV 0 0 0.000 0.000 0.000 0.000 0.000 0.000

Table 10: Performance of contig caller against Manta for long insertions

5 Discussion

The most promising approach explored is contig alignment after denovo as-
sembly. The high precision that accompanies the novel longer insertions
generated via denovo assembly would demonstrates that the algorithm is
more effective than the split read calling approach employed by Manta (for
long insertions).

5.1 Super-contigs

Furthermore, the high specificity of the contigs generated via diamond align-
ment is encouraging, and there is evidence that with some tuning of align-
ment parameters, that more of the super-contigs generated could contribute
towards calls. The majority of the longest super-contigs were not correctly
aligned; for instance the 10kb deletion shown below:

Figure 4: Misaligned 10kb deletion
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In this instance, there was not enough context to align across the dele-
tion, and the alignment was split. This would be an easy enough thing to fix
up, gaining perhaps 40 or so very long deletions. There were over 140 super-
contigs generated over 1000kb in length; from a random sample of twenty of
these super-contigs, over 90% of them seem to correctly align with known
structural variants. Combining this with the homozygous calls made dur-
ing the original pipeline, and this denovo approach outperforms Manta for
longer insertions and could possibly be used to augment the Manta insertions
detected.

5.1.1 More control of assembly

As of now, the DeBruijn graph used to generate the super-contigs and the
contigs themselves are plucked from various stages of the Abyss denovo as-
sembly process. The Abyss assembler is nicely decomposed with good doc-
umentation; it might be possible to take more fine grained control of the
assembly process and optimize for detecting structural variations.

5.1.2 Exploiting the DeBruijn graph

There is more information encoded in the DeBruijn graph than is currently
used by this approach. While the detection of diamonds is quick and high
confidence, finding and resolving more complex bubbles should yield more
calls. As discussed by Iqbal in the colored Debruijn graph paper [4], it is
possible to use the reference genome to resolve irregularities in the bubbles
and make high quality calls.

5.2 Augmentation of Manta

This contig alignment approach appears to perform disproportionately well
for longer structural variants. The high precision of these long calls is likely
due to the filtering step of alignment; only contigs with context that aligns
extremely cleanly will have a high enough score to align across the structural
variant. Denovo assembly will also be capable of sequence resolving long
insertions in a way that is entirely impossible with break-end callers. As
a result, one definite pathway to novel results is to augment Manta results
for deletions and short insertions with the long insertions discovered by the
contig caller.
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