
An AI Agent for Playing Hex

GEORGE HORRELL, Stanford University, USA

ALI MALIK, Stanford University, USA

ELI ECHT-WILSON, Stanford University , USA

In the past few years, Artificial Intelligence has shown
itsmettle in all manner of fields. In particular, revolution-
ary work has been done in the area of abstract strategy
games, with AI agents for Chess, Go, and Shogi reaching
unprecedented superhuman levels. Beyond providing
amusement, game playing provides a valuable opportu-
nity for testing the abilities of high performant artificial
intelligence. In this paper, we tackle the two-player ab-
stract strategy game of Hex with the hope of creating
a medium level player using enhancements to tradi-
tional game playing algorithms such as Minimax and
Monte Carlo Tree Search (MCTS). Our findings show,
in support of the recent work by DeepMind, that an
increasingly sophisticated MCTS is a promising game
playing algorithm and with enough complexity, has the
potential to achieve superhuman strength in a wide
variety of games.

1 INTRODUCTION

1.1 Task scope

Our task for this project was to create an AI Agent
capable of playing the game of Hex at the level of
an intermediate human Hex player. Hex is a two
player zero-sum abstract strategy game in which
two players alternate placing hexagonal pieces on
a diamond shaped board. Player 1 tries to form a
connection between the left and right sides of the
board, while player two tries to form a connection
between the top and bottom. Hex is an interesting
game to develop AI agents for because it has quite
interesting mathematical underpinnings that allow

complex strategy to emerge out of a game with
simple rules. Additionally, Hex is an interesting
game to approach because it has a high branch fac-
tor (high number of actions for each player to take
from a given state), and therefore the state space
of the game is difficult for an agent to efficiently
explore. Hex has a higher branch factor than Chess,
but a lower branch factor than Go, placing it in an
interesting category where many different algo-
rithmic approaches towards AI may prove to be
successful. Our goal for the project was not only
to develop an agent capable of handling this high
branch factor and playing the game at a high level,
but to explore different algorithmic strategies and
see which ones are most successful.

1.2 State and game model

The game model follows the standard paradigm we
have used thus far in this class for two player zero
sum game models. The game state is represented
as a tuple (player, board) which stores the player
next to move, as well as a HexGrid object for the
current state of the board. The HexGrid efficiently
compresses the state of the board into 2 bit vectors:
one keeps track of the moves made by player 1
and the other keeps track of the moves made by
player 2. Initially HexGrid was backed by a 2-D
array with a union-find data structure to enable
efficient checking of win condition; however this

1



:2 • G. Horrell, A. Malik, E. Echt-Wilson

proved to be too inefficient as copying the large
data structures at each turn was too expensive.
At each turn, the set of actions available to ei-

ther player is the set of empty locations on the
board. This is easy to calculate and model, but also
presents a significant challenge for us, accounting
for the very high branch factor on larger boards,
making exploration difficult (discussed in more de-
tail later).
The start state for our game is an empty board,

with player 1 taking the first turn. For any state
and action taken by a player, the resulting succes-
sor state flips control to the opposite player and
stores an updated board (the exact same board ex-
cept with one more tile played, corresponding to
whatever action was taken on that turn). The end
state of the game is achieved when one player has
formed a path between their two sides of the board
with their tiles (player 1 is moving left to right,
player 2 is moving top to bottom). Note that when
the board is completely full, it is mathematically
proven by Brouwer Fixed Point Theorem that one
of the players has won: therefore, it is not possible
to tie a game in Hex (Gale, "Brouwer fixed-point
theorem"). The utility for an end state is infinity
for the winning player and negative infinity for the
losing player.

1.3 Evaluation

We evaluate our model by playing it against other
Hex agents aswell as humans, and using the agent’s
win rate to evaluate performance.
First, in order to single out one agent from the

many we develop as most advanced, we will play
the agents against each other in a tournament. This
tournament will play each pairing of agent against
one another for some fixed number of games, and
the winner(s) of that tournament (in number of
total games won) will be used for a further, more
detailed evaluation of hyperparameters and perfor-
mance under different conditions.

Testing our agent against human opponents is
difficult, because we do not have a variety of human
opponents to test against and each of the members
of our team has become quite familiar with the
strategy of Hex as well as the weaknesses of each of
our AI agents. However, the agent performed well
against volunteers at the poster session, proving
that it can hold its own against human players.
Lastly, we will evaluate our agents in terms of

efficiency, or the amount of time it takes for each
agent to make amove. One of the largest challenges
of this project has been creating agents that can
not only make intelligent moves, but do them in a
reasonable amount of time. We will evaluate and
discuss the efficiency of each of our algorithms,
and how it scales with the size of the board.

2 APPROACH

2.1 Oracle

An oracle for this project would be an expert hu-
man Hex player. Despite the development of many
successful Hex agents in the AI space, expert hu-
mans are still capable of beating agents. The upper
bound for this task, therefore, is to create a Hex
agent that plays at the level of an expert human
Hex player.

2.2 Baseline models

2.2.1 Initial Baseline. Our initial baseline model
relied on a very naive heuristic to play the game of
Hex. The model ignored the aspect of "defense," and
essentially tried to form a single path connecting
the two sides of the board as quickly as possible.
This naive algorithm reliably beats a random pol-
icy, but lacks the sophistication to recognize larger
strategic patterns.

2.2.2 Minimaxwith UCS evaluation function. Our
first sophisticated approach involved using a stan-
dard minimax algorithm with alpha-beta pruning



An AI Agent for Playing Hex • :3

and a custom evaluation function. Due to the large
branch factor of Hex (∼ 100 on large boards) and
the exponential runtime of minimax (O(b2d)), min-
imax can only run at a limited-depth of 1 in rea-
sonable time with the computing power available
to us. This means that the evaluation function be-
comes very important in evaluating different states,
because we can only explore a limited fraction of
the game tree in a reasonable amount of time, even
with optimizations such as AB-pruning.
Our evaluation function approximates the value

of a given state by calculating the minimum num-
ber of moves needed by each player to win the
game. A move in Hex is a good move if it makes
progress towards winning the game while simul-
taneously defending, or preventing the opponent
from making progress. This evaluation function
captures that idea by minimizing the number of
moves needed for the agent to win while maximiz-
ing the number of moves needed for the opponent
to win:

Eval(s) = numPlaysToW in(s,opp) −
numPlaysToW in(s,aдent)

This model starts to display more strategic game-
play patterns and even competeswell againstMonte
Carlo Tree Search Agents (at low iteration levels).

2.3 Improved models

2.3.1 Minimax with modified-beam search. In an
attempt to be able to search the game tree at a depth
higher than 1, we experimented with a modified-
beam search version of minimax, which selectively
explores the game tree in more promising areas.
The beam search algorithm only explores at most
K candidate paths through the game tree, using the
evaluation function to determine which candidate
paths to continue exploring. At maximizer nodes,
it considers all possible actions from the current
set of candidates and only continues exploring the

best K of them. At minimizer nodes, we consider
each candidate path and, for each one, extend it
with the action that leads to the worst successor
state (according to the evaluation function). This
agent has a higher efficiency overhead (because it
runs the evaluation function many times for each
depth layer, not only at leaves) but can run at a
higher depth in a more reasonable amount of time.
This higher depth is advantageous, but the non-
exhaustive search can sometimes miss good moves
and pay a price for it.

2.3.2 Minimax with bridge detection. A final im-
provement to our minimax approach involved in-
corporating the idea of bridges into the evaluation
function. A bridge is a Hex-specific strategy term
referring to a configuration of pieces that a player
can treat as a virtual connection. That is, any move
made by the opposing player to threaten the con-
nection can be countered by the player who owns
the bridge to maintain the connection. Below is an
example of the simplest and most common type of
bridge:

Fig. 1
Bridge pattern are essential to the strategy of Hex. This path
is effectively connected because if the opponent takes B, the
player can take D and retain the connection.

It is advantageous for a player to form bridges
because they can be more productive in claiming
space on the board, while not risking the possibil-
ity of the opponent cutting off their route towards
a win. Our evaluation function takes advantage
of this by severely discounting bridges in calculat-
ing the number of moves needed to win a game.
That is, when a bridge exists, the cost of complet-
ing the bridge is a fraction of the cost of an actual



:4 • G. Horrell, A. Malik, E. Echt-Wilson

move, making it advantageous for the agent to cre-
ate bridges and stop the opponent from creating
bridges.
This extension greatly improved the performance

of the minimax agent, allowing it to remain much
more competitive with Monte Carlo methods.

2.3.3 Monte Carlo Tree Search. The pitfall of
minimax is the fact that it explores the entire state
space of the game tree (aside from the branches
that are pruned with alpha-beta pruning). With the
high branch factor of Hex, this severely cripples the
potential of minimax. We decided to explore Monte
Carlo Tree Search, a technique that has proven to
be effective in similar games with a high branch fac-
tor, to overcome this difficulty. Monte Carlo Tree
Search effectively prunes the search space by se-
lectively exploring the game tree in places that are
more advantageous to the agent.
Monte Carlo Tree Search repeatedly runs for a

given number of iterations, and each iteration adds
information to the exploration tree. Each iteration
consists of 4 phases:

• Selection: Select a node(state) in the game
tree to learnmore about, balancing exploration
with exploitation.
• Expansion: Expand the selected node to all
of its possible children nodes.
• Evaluation: Pick a child node and play out a
game randomly from that state to the end of
the game.
• Backpropagation: Update all nodes on the
path from the child node to the root with the
information from the game playout.

Pure Monte Carlo Tree Search proves to be effec-
tive at playing the game of Hex, as long as it can
efficiently run enough iterations in a reasonable
amount of time. The tradeoff between efficiency
and game performance continues to be an issue,
even when using MCTS.

ALGORITHM 1: Monte Carlo Tree Search
Function MCTS(s0)

Initialise tree root v0 with s0.;
repeat

v1 ← Select(v0);
∆← Simulate(v1.state);
Backpropoдate(∆,v1);

until time remaining;
return BestChild(v0)

2.3.4 Monte Carlo Tree Search AMAF. Based on
our research of related work, we decided to im-
plement an AMAF (all moves as first) extension to
Monte Carlo Tree Search which has proved success-
ful in other agents. The extension is based on the
idea that a good move is a good move, regardless of
when in the playout phase it occurs. Essentially, in
the backpropagation phase, not only is the count of
the nodes in the selection path modified, but also
the count of each node’s action is modified. So if a
playout involved Player 1 winning with a sequence
of moves M1,M2,M3, then for each node v in the
selection path, the count of Succ(c,Mi) is also in-
cremented, for eachMi . This modification allows
for more data about the game tree to be gathered
quickly at the possible expense of accuracy. In prac-
tice, AMAF has been shown to be more successful
than vanilla MCTS.
After our poster session, we further optimized

our implementation of MCTS, rewriting in a more
performance oriented language (C++). This sped
up search by a factor of ∼25x, enabling us to run
at a much higher number of iterations, thereby
improving the quality of our agent.

3 RESULTS

3.1 Analysis

3.1.1 Finding and optimal policy. After imple-
menting a variety of different approaches for our
game player, we tested the implementations against
each other in a grand tournament. Each one of our



An AI Agent for Playing Hex • :5

Policies Tournament
Minimax Beam MCTS AMAF AMAF-Br.

Minimax - 0.50 0.65 0.25 0.45
Beam 0.50 - 0.70 0.25 0.50
MCTS 0.35 0.30 - 0.10 0.35
AMAF 0.75 0.75 0.90 - 0.90
AMAF-Br. 0.55 0.50 0.65 0.10 -
Table 1
Win rate of row policy vs. column policy. Played 20 games
on 9 × 9 board with MCTS run at 5000 iterations.

policies was pitched against every other policy for
20 games (10 with each starting first) and the best
players were picked for further exploration. The
results can be seen in Table 1.
The results clearly indicated that Minimax and

MCTS-AMAF were the two dominant policies of
their respective approaches. This matched our ex-
pectations considering these were refinements of
basic Minimax and MCTS. One surprising result
was that MCTS-AMAF bolstered with a more re-
fined playout that deterministically saved bridges
within its random policy (AMAF-Br) actually per-
formed worse than the regular MCTS-AMAF pol-
icy.

3.1.2 Minimax vs MCTS. Following the tourna-
ment, we selected the best two policies, namely
Minimax-Bridge and MCTS-AMAF (hereafter re-
ferred to as Minimax and MCTS respectively), to
see if we could improve them further and then de-
termine which one performed better than the other
when their hyperparameters were optimised. With
respect to Minimax, most of our improvements
were made at an implementation level by improv-
ing efficiency of the code. MCTS on the other hand
had two important hyperparameters which we ex-
plored to see outcome on game playing ability.
An important hyperparameter affecting theMCTS

is the inquisitiveness of the UCT based selection
policy. When the algorithm is selecting which node
to explore, it must balance exploration vs exploita-
tion by picking promising game states to playout

further, but also maintaining the ability to explore
unfamiliar states in case a better position lies there.
The canonical way to do this, as seen in "Combining
online and offline knowledge in UCT" (Gelly and
Silver), is to use UCT (Upper Confidence bounds
for Trees) to select the child node i with the highest
value, νi , according to the formula:

νi =
wi

ni
+ c

√
log(p)
ni

wherewi is the number of wins that have been
played out from node i , ni is the number of total
games played out from the node, p is the number
of games played out from the parent of the node,
and c is a constant (often set to

√
2).

Figure 2 shows the results of varying the constant
c , called inquisitiveness, to determine the optimal
value of 0.1. This intuitively makes sense; too large
a value and the player is undirected in its search
and does not learn more about good states whereas
too greedy an approach leads to myopic play.

1 · 10−2 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

Inquisitiveness for ϵ-greedy UCT

M
CT

S
w
in

ra
te

ag
ai
ns
tM

in
im

ax

MCTS vs Minimax with varying inquisitiveness

Fig. 2
Effect of varying inquisitiveness of ϵ-greedy exploration in
the UCT based selection phase. Played on 11x11 board with
100 games for each data point and 10k iterations for MCTS.



:6 • G. Horrell, A. Malik, E. Echt-Wilson

Another hyperparameter we explored was think-
ing time per move for the MCTS player. As soon as
the player’s turn starts, MCTS build the game tree
from that state, repeatedly exploring and running
Monte Carlo playouts to determine what move to
make. Intrinsically, one would imagine that the
longer the MCTS is allowed to think, the better it
performs. However, this has to be balanced with
the long time it might take and whether the trade
off is worthwhile. Figure 3 shows that around 10-
15k iterations of MCTS exploration per move is the
optimal thinking time for balancing performance
with time.

0 1 2 3 4 5
·104

0

0.2

0.4

0.6

0.8

Iterations per move

M
CT

S
w
in

ra
te

ag
ai
ns
tM

in
im

ax

MCTS vs Minimax with varying iterations

Fig. 3
Effect of varying iterations of Monte-Carlo tree search per
move. Played on 11x11 board with 100 games for each data
point

With these two hyperparameters determined, we
proceeded to test the Minimax policy against the
MCTS policy for varying board size. Our hypothe-
sis, corroborated by the data in Figure 4, predicted
that MCTS would mostly outperform Minimax on
medium sized boards but would start to deteriorate
on larger boards. The data showed that there was
a severe drop in performance for MCTS on boards
bigger than size 11. This makes sense considering
the MCTS is still thinking for the same amount of

time for each of these boards, whereas the Mini-
max is using an evaluation function that is almost
invariant of the size of the board and is only mildly
slower as board size increases. A further area of
research would be to increase the efficiency of both
these algorithms so that MCTS can run for more
iterations and Minimax can run at a greater depth.

7 8 9 10 11 12 13 140

0.2

0.4

0.6

0.8

Board Size (n × n)

M
CT

S
w
in

ra
te

ag
ai
ns
tM

in
im

ax

MCTS vs Minimax with varying board size

Fig. 4
Effect of board size on policies. MCTS played at 10,000 itera-
tions with 100 games played for each data point.

4 CONCLUSION

Our work thus far has been successful in exploring
different approaches towards an artificially intelli-
gent Hex agent, and has shown that Monte Carlo
Tree Search with a sufficient number of iterations
is the most promising approach. With the correct
hyperparameters, MCTS methods outperform min-
imax and even hold their own against human op-
ponents that are familiar with the game of Hex.
There were, however, limitations to our MCTS

game player. Most noticeably, it performed suc-
cessively worse on larger boards due to the larger
search tree and lacked the ability to easily improve



An AI Agent for Playing Hex • :7

further with tweaks to hyperparameters. To over-
come this plateau, we identified two main areas of
improvement.
Firstly, it was clear that the number of iterations

we ran MCTS for played a large role in its game
playing ability. Thus, focusing on writing a more
efficient, parallelisable implementation of the al-
gorithm would allow large gains in performance.
Moreover, we noticed that our testing process was
sluggish due to the slow thinking time of MCTS.
Improvements to efficiency would allow us to run
more tests to determine an optimum configuration
for the algorithm.
Secondly, we believe that the MCTS with it’s

naive UCT based selection and random playouts is
inherently limited in the complexities it can cap-
ture of a given game. A more sophisticated selec-
tion/playout policy would allow for greater infor-
mation to be gleaned from the Monte Carlo play-
outs and incorporated into the game player’s strat-
egy. In this avenue, the work at DeepMind on Al-
phaGoZero and AlphaZero have shown phenome-
nal results using MCTS guided by a convolutional
neural network (CNN).

Fig. 5
Neural network used to guide selection/playout phases of
MCTS by approximating the probability of winning from a
given state.

Our future plans are to incorporate the ideas by
DeepMind into our game player by having our se-
lection guided by a neural network. As outlined in
Figure 5, the idea is to train a self-playing neural
network that takes in a game state and outputs a

probability of winning from that state. This pre-
dicted probability is used to select which nodes
to explore further and the Monte Carlo playout
is used as a target value to adjust the neural net-
work’s prediction in a reinforcement learning style
manner. This improvement will likely make each
iteration of MCTS more informative and further
improve our agent’s performance.

ACKNOWLEDGMENTS

The authors would like to thank Professors Liang
and Ermon of Stanford University and our TA,
Amani Peddada, for their guidance.

REFERENCES

[1] Silver, David, et al. "Mastering the game of
go without human knowledge." Nature 550.7676:
354-359, 2017.
[2] Huang, Shih-Chieh, et al. "MoHex 2.0: a pattern-
based MCTS Hex player." International Conference
on Computers and Games. Springer, Cham, 2013.
[3] Arneson, Broderick, Ryan B. Hayward, and
Philip Henderson. "Monte Carlo tree search inHex."
IEEE Transactions on Computational Intelligence
and AI in Games 2.4: 251-258, 2010.
[4] D. P. Helmbold A. Parker-Wood "All-moves-as-
first heuristics in Monte-Carlo Go" Proc. Int. Conf.
Artif. Intell. pp. 605-610, 2009.
[5] Sylvain Gelly and David Silver. Combining on-
line and offline knowledge in uct. In ICML ’07: Pro-
ceedings of the 24th Internatinoal Conference on
Machine Learning, pages 273-280. ACM, 2007.
[6] Silver, David et al. "Mastering Chess and Shogi
by Self-Play with a General Reinforcement Learn-
ing Algorithm." eprint arXiv:1712.01815.
[7] Gale, David. "The game of Hex and the Brouwer
fixed-point theorem." The American Mathematical
Monthly 86.10 (1979): 818-827.


	Abstract
	1 Introduction
	1.1 Task scope
	1.2 State and game model
	1.3 Evaluation

	2 Approach
	2.1 Oracle
	2.2 Baseline models
	2.3 Improved models

	3 Results
	3.1 Analysis

	4 Conclusion
	Acknowledgments
	References

