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Abstract

Deep convolutional neural networks are applied to the
problem of abnormality detection in musculoskeletal X-rays
of the lower extremities. Methods build on prior medical
image classification approaches by proposing more sophis-
ticated solutions to the problem of Multiple Instance Learn-
ing. Two approaches in particular, one based on recur-
rent neural networks and the other on Attention models,
are shown to outperform static pooling methods. General
performance approaches radiologist-level abnormality de-
tection on certain body parts.

1. Introduction

Musculoskeletal diseases are extremely common, affect-
ing more than 1.7 billion people worldwide, and accounting
for more than 30 million emergency room visits annually
([12]). With this in mind, we have chosen to apply computer
vision techniques to the task of detecting abnormalities in
musculoskeletal X-rays of the lower extremities. Manual
classification is labor intensive, requiring the attention of a
trained radiologist. In developing countries this can be a
major roadblock to delivering urgent care (the country of
Liberia has just two radiologists, for example). A reliable
automated system would reduce the workload of radiolo-
gists and hospital staff and improve medical efficiency. Re-
cent results in papers such as [9] and [[10] by Rajpurkar et al.
which attempt classification on upper extremities and chest
X-rays, respectively, suggest that accuracy comparable to
that of trained radiologists is within reach for such tasks.

In this paper we attempt to replicate such results but on
a different dataset, this time consisting of musculoskele-
tal X-rays of the lower extremities (ankle, hip, foot, knee).
Specifically, a single entry of this dataset consists of a
study of single patient which is labeled normal or abnor-
mal, where a single study includes multiple images of the
body part in question. The models developed in this paper
attempt to correctly label the entire study. Formally, given
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astudy X; = {x1,...,xx} consisting of K images, and
a label Y; corresponding to that study, we seek to create a
model which given X; will output P(Y; = 1 | X;), the
probability that the case is abnormal. Our prediction, then,
is 1 (abnormal) if P(Y; = 1 | X;) is greater than 0.5, and 0
(normal) otherwise. Following the lead of [9]], we use trans-
fer learning to train a model to classify single images, then
pool these scores together into a prediction for the entire
study. We use the model architecture in [9]] as a baseline
against which to compare our new models.

The task of pooling individual image scores together into
a single study prediction is a special case of a more gen-
eral machine learning problem known as Multiple Instance
Learning. Our main contribution is implementing and test-
ing dynamic approaches to Multiple Instance Learning, and
comparing them to traditional methods, such as taking the
arithmetic mean. To this end we developed two models,
one based on attention, a concept familiar from the image
captioning task, and the other on recurrent neural network
architectures.

We found that the attention-based model outperformed
the baseline on all extremities except for ankle in terms of
the F1 metric, while the recurrent model outperformed it on
all extremities except for in AUROC. Ensembling the two
together achieved better performance than the baseline in
both metrics on average.

2. Dataset

Our dataset has been provided by the Artificial Intel-
ligence for Medicine and Imaging (AIMI) Center. The
data consists of 2,000 studies, each of which contains X-
rays of a single patient, with each bone seen from multiple
views. In total, this amounts to over 22,000 images, each la-
beled as either normal or abnormal, with an overall normal-
abnormal split of 48%-52% .

The dataset is split by body parts into ankle, hip, knee,
and foot cases. For each body part, we split the dataset into
a training set (64% of the total cases), validation set (16% of
the total), and a test set (the remaining 20%), such that there



Table 1: Lower Extremities Dataset

Extremity | Set Images Cases Median
Train 3883 320 12
Val 952 80 12
Ankle | rest 112 100 12
Total 5987 500 12
Train 3724 320 12
Foot Val 948 80 12
Test 1152 100 12
Total 5824 500 12
Train 2804 320 8
Hip Val 593 80 8
Test 756 100 8
Total 4153 500 8
Train 3881 320 12
Knee Val 999 80 12
Test 1242 100 12
Total 6122 500 12
Total 22086 2000 12

STANDING

Figure 1: Example view of a normal case from the dataset.

was no overlap in patients between the three sets. Overall,
this resulted in 14,242 distinct training images, 3,492 vali-
dation images, and 4,302 testing images. Table 1 shows the
size of the dataset for each body part, as well as the median
number of images per case for each dataset.

3. Background and Related Work
3.1. Classification Through Transfer Learning

Previous attempts at medical imaging classification typ-
ically train models through transfer learning. In this ap-
proach, the first n layers of a pretrained image classification
model, often developed for larger datasets such as CIFAR-

10 or ImageNet, are adapted for a more specialized class
appending a final classification layer (usually a fully con-
nected layer with a softmax or sigmoid nonlinearity). The
final layer is then trained on the new dataset, while the
weights of the feature extractor either remain fixed, or are
fine-tuned using gradient descent.

The surprising efficacy of transfer learning is docu-
mented in [L1], in which the authors conduct image clas-
sification on various datasets using features extracted from
various levels of the OverFeat model. With regard to the
amount of layers of the original network one should use,
they report better performance the more layers they extract,
although this might not be applicable to deeper base net-
work such as DenseNet-169, since their final layers may
have specialized more to the original task. The authors
conclude that the combination of generic features from
a pretrained network and linear classification using those
features provides a strong baseline for many classification
tasks.

This approach is particularly common in medical clas-
sification tasks. Recently it has successfully applied to X-
rays of the chest, as well as musculoskeletal X-rays of the
upper extremities ([LO], [9]). In the latter, they build their
model on the Densenet-169 model described in [3], origi-
nally trained on ImageNet. They then train the model end-
to-end, finally achieving accuracy which exceeds that of ra-
diologists on certain body parts, while remaining competi-
tive on others.

3.2. Dynamic Multiple Instance Learning

The Multiple Instance Learning (MIL) setting is com-
mon in medical applications, and in fact was first introduced
in [2] for drug activity prediction. Most research surround-
ing MIL explores methods of pooling outputs for individual
objects into a label for a bag of multiple objects.

The most basic approaches involve taking the average
of all the prediction of instances in the bag, and this
is employed in [9]. Other MIL algorithms involve using
Expectation-Maximization to learn a probabilistic graphi-
cal model given the probabilities that a given instance is
positive or negative ([[16]).

In [6], the authors propose a pooling mechanism inspired
by the attention mechanism widely used in image caption-
ing and text analysis ([LL3]). Instead of taking a simple aver-
age of the instance predictions, the Attention model uses a
weighted average, with the weight of each instance assigned
by a two layer neural network. This method has the ad-
vantage that it can be trained using back propagation, since
the weighted average function is differentiable. Testing on
classical MIL datasets, they find that this attention-based
approach was comparable with the best performing classi-
cal MIL algorithms (such as MI-SVM, EM-DD, etc).



3.3. RNNs and Multiple Instance Learning

Though there are multiple examples of deep learning be-
ing applied to MIL, RNNs (Recurrent Neural Networks)
have thus far been used sparingly. This is likely due to
the fact the MIL problem assumes that the order of the in-
stances in a bag is irrelevant, while RNNs are typically used
to model sequentially dependent behavior in tasks such as
video classification [8] and image captioning [7]. RNNs
have the advantage of being capable of modelling the rela-
tionship between entries in a case, but classic RNNs strug-
gle to represent long term dependencies between inputs.
Newer variants of the RNN have been developed to alleviate
this problem and the LSTM network is most widely used
[4]. LSTMs maintain a continuous flow of cell state that
allows information from early inputs to propagate through-
out the sequence, which is appropriate for inputs of longer,
more meaningfully interconnected sequences [4]. Some
work has been done to investigate the usage of RNNs in
MIL [[1], and has demonstrated that they can be comparably
effective to classical MIL methods.

4. Methods
4.1. Baseline

Our baseline model is a 169-layer CNN that predicts
the probability of a given image containing an abnormality.
The network weights are initialized to those of a Densenet-
169 model pretrained on ImageNet, and we replace the fi-
nal classification layer with one that has a single output,
to which we apply a sigmoid nonlinearity. We chose this
baseline to keep our results comparable with the work per-
formed in [9], the model being architecturally identical to
theirs. Note, however, that while [9]] performed end-to-end
training upon their network, because we were restricted in
our computational resources and training set size we only
trained the final classification layer.

During training we optimized the weighted cross entropy
loss for a given image ! and label y! from body part ¢ (the
label for a given image is simply the label assigned to the
study it is found in):

L(w;,y;) = — wiy;log P(y; = 1| x})

?

1
w1 -y log(1 - Pyl =1 at)),

where

LSyl =1

forl € {0,1}, where N is the number of training examples
in the dataset for body type ¢, and P(y! = 1 | x!) is the
output of the model. This choice is motivated by the fact
that the data-set is label-skewed (in total the data contains a
48%-52% normal-abnormal split).

4.2. Multiple Instance Learning

The baseline model described above outputs a probabil-
ity that a given image is abnormal. However, our task is to
assign a label to cases containing many such images. This
can be viewed as a Multiple Instance Learning problem. In
MIL, one is given a bag of instances X = {z1,...,xx}. K
may vary depending on the bag, and each bag is assigned a
binary label Y. Furthermore, each instance has a binary la-
bel, y;, which is unknown. The MIL problem assumes the
following relationship between the bag label and instance
labels:

) 3)

v {ufzleyk >0
0 otherwise
that is, the bag is positive if and only if at least one of the
instances is positive.

MIL also assumes that probability that a bag is positive,
P(Y = 1| X), should be permutation invariant. In this
paper, we explore three distinct methods of pooling single
instance label prediction into prediction for an entire bag.
For the following let P(y = 1 | ) denote the output of the
baseline model given an X-ray image x.

4.2.1 Arithmetic Mean

In this approach, also used in [9], the output probability for
abag X is simply the average of the output probabilities for
the instances in that bag. Precisely, if X = {z1,..,zx}isa
bag of images, then

K
1
P(Y:1|X):§ ?P(yl-:lm). “
i=1

4.2.2 Attention

The arithmetic mean approach has some clear disadvan-
tages. For example, consider a case X with two images,
x1 and x2 of the same body part, where x; obscures the ab-
normality, and in x» it is completely clear. We would expect
P(y; = 1| 21) tobe close to 0, and P(ys = 1 | z2) to be
close to 1. With averaging, P(Y = 1 | X) will be approx-
imately 0.5, when it should actually be very high, since z3
clearly shows the abnormality.

To remedy this, we consider taking a weighted average
of our baseline outputs, where the weights are given by a
two layer neural network, the intuition being that the net-
work may learn to recognize views that contain important
signal. Given a bag X of images z1, ..., Tk, this network
takes as input a feature embedding of a single image x;,
and outputs a score, s;. Let s be the vector of scores. Then
the weights, w = [wy, ..., wx] = softmax(s) (this is to en-
sure that the weights add up to 1). Finally, the output of the



entire model is
K
P(Y=1|X)=> wP(y;=1|). (5)
i=1

Here the output probabilities P(y; = 1 | ;) are given by
the classification layer of the baseline model trained initially
trained on single images. An advantage of this architecture
is that it is still permutation invariant, and can handle any
bag size without alteration.

We implemented the Attention model (Figure 2a) using
a two layer network, with a ReLU nonlinearity preceded by
batch normalization, and dropout layers before each fully
connected layer to prevent overfitting. This was then trained
to optimize weighted binary cross entropy on a per-case ba-
sis, keeping both the feature extraction and classification
layer from the original baseline network fixed.

4.2.3 LSTM Pooling

Arithmetic and attention methods in MIL have the advan-
tage of being easily interpretable. Unfortunately they can-
not incorporate information about the relationship between
views within a case. For instance, consider two views that
suggest an subtle abnormality in the same region — neither
of the methods proposed so far could adequately share this
information.

To alleviate this problem, we propose using a recurrent
network as our pooling layer. As discussed above, there
has been limited research into the efficacy of recurrent net-
works for permutation invariant MIL. Recurrent models are
typically not permutation invariant. However, we hypothe-
sized that a recurrent network could be effective in discern-
ing between obscured or irrelevant views and “remember”
features of important views that clearly show or refute ab-
normalities.

Since relationships between immediately sequential
views are equally relevant as separated views, we encounter
the issue of long term dependencies. To mitigate this issue,
we used an LSTM network. The system of gates that the
LSTM network uses to protect cell state neatly represents
how we wish for our prediction to be updated by each view
([4]) - updating our predicted outcome if new information
passes a threshold.

In an attempt to encourage permutation invariance,
we randomly permute the views within each case every
time they are loaded. We continue to use the pretrained
Densenet-169 as a feature extractor, which we do not up-
date. Another possible concern is that the network might
learn the length of cases, as these can vary and there is a
slight correlation between case size and abnormality (0.07).
To account for this, we fixed our case length to the median
case length for the dataset (twelve images). For any cases
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Figure 2: a). The Attention model outputs a weight for each
embedded input, then applies a softmax so that they collec-
tively add up to one. These are then dot-producted with the
classifier scores to produce the output. b). In the LSTM
pooling model, features for each view are extracted using
Densenet and then sequentially fed into LSTM model. The
hidden representation is then classified once the last view
has been inputted.

with fewer than twelve images, we repeated previous im-
ages within the case to make up to twelve. For any cases
with more than twelve images, we randomly sample twelve
views. While we anticipated that this would negatively af-
fect predictions for these cases, we found that only 14% of
cases were above size twelve. Standardizing the length of a
case also provides training benefits, allowing full vectoriza-
tion of cases and larger batch sizes.



5. Experiments

After initially attempting to train a model that could clas-
sify abnormal X-rays without discriminating between the
different extremities, we found that this approach yielded
poor results. To improve performance, we split our dataset
and trained individual models for each of the four extremi-
ties (as suggested in [9])).

We ran experiments on three classes of models, training
each one individually on each of the four extremities: an-
kle, foot, hip, and knee. In particular, our baselines were
the DenseNet-169 models pretrained on ImageNet with the
final classification layer then trained on each of the ex-
tremities; these are evaluated with arithmetic mean pool-
ing — the equivalent of running the model used in [9] on
our dataset, allowing for comparable results. Our two ex-
perimental models were the Attention model described in
§4.2.2, and the LSTM model described in §4.2.3.

5.1. Training

For training, we normalize the data to have the same
mean and variance as the images in ImageNet. We also re-
size the images to have the same 224 x 224 size as those
in ImageNet. As previously mentioned, we augment the
dataset using random lateral inversions as well as rotations
of up to 30 degrees.

Using grid-search on a validation set of 80 studies, we
found that the best performing learning rate for the baseline
was 10~%, 1075 for Attention, and 103 for the LSTM. Due
to limited time and computing resources, we identified that
a good limit on the batch-size for training was 32 views.
For the baseline and Attention models, this allowed for fast-
enough training when data loading was parallelized through
a worker pool. For the LSTM model, we reduced batch-
size to 6, finding that larger batch sizes could not be loaded.
This was due to the fact that each batch was composed of
multiple cases, and each case contained multiple views, in
particular, twelve views, as described in §4.2.3.

For all models, we used the Adam optimizer with pa-
rameters 31 = 0.9 and S = 0.999, as in [9]], and decayed
the learning rate by a factor of 10 each time the validation
loss has plateaued for 10 epochs. We save the best model
weights with respect to F1 evaluated on the validation set
during training as a form of early-stopping.

5.2. Testing

In testing, we grouped each case of views to perform
the analog of MIL for prediction. Namely, for each model,
we fed in all the views for a particular study, and predicted
P(Y = 1]X) for the bag (for Y whether the bag X is ab-
normal, as in equation 3). For the baseline model, we used
the arithmetic mean as pooling described in §4.2.1. As de-
scribed above, the Attention and LSTM models in turn are

designed to pool the results of different views and output
one prediction per case. Additionally, we tested an ensem-
ble of the Attention and LSTM models.

5.3. Metrics

We use AUROC (area under the ROC curve) and F1
as our primary evaluation metrics, the former being con-
sidered a standard for the evaluation of medical diagnos-
tic test ([3]), and the latter to provide a comparable met-
ric to [9], which lists F1 scores. The ROC curve plots the
true-positive rate against the false-positive rate of a binary
classifier, which are found as functions of the classifica-
tion threshold v, TPR(«) and f F'PR(c). The ROC curve
for an uninformative model will be a straight diagonal line
between these two points TPR(0) = FPR(0) = 0 and
TPR(1) = FPR(1) = 1. An ROC curve above this line
shows positive predictive power, as well as the extent of
tradeoff between true and false positives. Thus, the area
under the curve, which can range from O (always predict in-
correctly) to 1 (always correct), provides a measure of clas-
sifier performance. One benefit of using AUROC is that it
is independent of the classification threshold «. Another
benefit AUROC has over more traditional measures on vi-
sion tasks (such as accuracy) is that it takes into account
both true positive rate (sensitivity) and true negative rate
(specificity, which is just 1 — F PR(«)), which ensures it is
unaffected by the prevalence of positive training examples
([30).

This latter benefit extends to the F1 score, which is the
harmonic mean of the precision, i.e. positive predictive
power

TPR(«)

FPR(a) + TPR(a)’ ©

and true positive rate, i.e.
TPR(a)?
FPR(a)+TPR(a)

: (7
TPR
FPR(a)+§’allR(a) + TPR(a)

Fl(oz) =2

Thus, the F1 score can be seen as measuring the perfor-
mance at a particular point on the ROC curve. Since both
our models and those in [9] round P(Y = 1|X) to predict
labels, we report F3(0.5).

5.4. Results

The results of testing the model are reported in Table 2,
which contains the AUROC and F1 scores for three mod-
els evaluated on the various test sets. Comparison to the
baseline is reasonable in this case since its architecture
matches that of previous muskuloskeletal classification at-
tempts ([9], [10]). We found that the model did not grossly
overfit during training, which suggests that our choice train-
ing hyperparameters were reasonable.
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Figure 4: The ROC curves show the tradeoff each model
makes between false and true positives. Both the Attention
and LSTM models outperform the baseline on area under
the curve and in F1, as can be seen by the shapes of the
curves. While LSTM has a better AUROC, the Attention
model has a substantially better F1, which may be explained
by the region in ROC space where its curve is higher than
that of the LSTM, which is likely where the decision thresh-
old boundary lies.

We found that there was some variation in performance
of the three classifiers between the four extremities. The At-
tention model out-performed the baseline architecture from
[9] when evaluated on lower extremities in F1 on average,
and achieved comparable AUROC scores. On the other
hand, the LSTM model registered higher AUROC scores
on average than the Attention model, but did not improve
on the baseline F1 scores. Finally, ensembling the Attention
and LSTM models resulted in a model which out-performed
the baseline in both AUROC and F1 scores.

(a) Saliency map and Class Activation Map for abnormal ankle
X-ray. The baseline model outputs an abnormality probability of
0.75, correctly classifying the image.

Figure 5: Saliency maps and Class Activation Maps
(CAMs) show the region of the input image which was im-
portant in classificaiton.

6. Discussion
6.1. Model Interpretation
6.1.1 Saliency Maps and Class Activation Mappings

To better understand the performance of baseline single im-
age classification layer, we create both saliency and class
activation mappings. The saliency map is computed by tak-
ing the absolute value of each pixel of the input image with
respect to the score of the correct class. Colloquially, one
might say that the saliency map shows which part of the
image the model output is sensitive to, that is, where small
changes in the pixel values might have large effects on the
model output. Class activation mappings, on the other hand,
might be said to highlight the areas which were highly acti-
vated during the classification of an abnormality. These are
computing by taking an weighted average of the activations
of an image before the final average pooling layer of the
feature extraction, where the weights come from the final
classification layer. Formally, if we have an image z, de-
note the i-th activation mapping by f;(x) and the i-th fully
connected weight by ¢;. Then M(x), the class activation
mapping, is given by the formula

M(z) = Z cifi(@). ®)

M (z) is then upscaled to the dimensions of the input image
to highlight which regions were important in classification.

Note that the example given in Figure 5 demonstrates
any writing or labeling on the images was not valuable for
classification. This is often a concern with medical datasets,
as labels or writing on the views can often give a hint as to
whether the case was normal or abnormal, distorting model
results.



Table 2: Testing Results (with winners in each row bolded)

Extremity Metric | DN-169 | Attention LSTM | Ensemble
Ankle AUROC | 0.782 0.767 0.797 | 0.800
F1 0.659 0.564 0.634 | 0.617
Foot AUROC | 0.785 0.800 0.812 | 0.812
Fl 0.629 0.763 0.681 0.716
Hip AUROC | 0.722 0.697 0.756 | 0.744
F1 0.581 0.633 0.622 | 0.630
Knee AUROC | 0.831 0.798 0.725 0.786
F1 0.588 0.699 0.506 | 0.621
Average AUROC | 0.780 0.766 0.773 0.786
Fl1 0.614 0.665 0.611 0.646

6.1.2 Attention

The point of the Attention model is to be able to differen-
tiate between important and unimportant views of a case.
Figure 6 demonstrates the effect the Attention model can
have on the output of a specific study. In this case, it at-
tributes a much higher weight to the correctly classified im-
age, changing the final prediction. One disadvantage of at-
tention, however, is that it generally makes predictions more
confident, and therefore is highly dependent on predictive
capability of the baseline image classifier. This can be ob-
served in the histograms in Figure 7. This may explain the
lower AUROC performance of Attention on knee studies,
since changing the decision threshold has less of an effect
on an extremely confident predictor. Note, however, that
the Attention model may effectively trade AUROC perfor-
mance for better F1, as shown in Figure 4 for the case of
foot studies.

Despite good performance by the Attention model, its
loss curve in Figure 3 suggests it may have had trouble gen-
eralizing, as its validation loss curve remains relatively con-
stant throughout training. Solutions may involve increasing
dropout, adding explicit regularizations, or increasing the
size and quality of the dataset.

6.1.3 LSTM

We see from the validation loss curves that the LSTM was
able to generalize, yet it remains the most difficult model to
interpret. The saliency map in Figure 8 shows that images
which are input later generally exhibit more gradient ac-
tivity, suggesting that although the LSTM does retain some
memory of previous views, it still is order dependent, which
is undesirable in the MIL setting. The dispersed nature of
the saliency map also suggests that it might have trouble
targeting the area of the image most relevant to abnormality
detection, perhaps due to the variance in the alignment of
the input images.

p1 = 54, w1 = 0.02 p2 = 021, w2 =~ 0.00

p3 = 0.65, ws = 0.97

Figure 6: Model output probability and attention weights
for each view in a single abnormal foot study. Due to the
weighting mechanism, which allows it to assign more im-
portance to the third image, the Attention model outputs
an abnormality probability of 0.65, correctly classifying the
study, while a naive average would give 0.47, resulting in a
misclassification by the baseline.

6.2. Model Performance

Metrics for radiologist performance upon lower extrem-
ity abnormality classification were unavailable, but the F1
score on our best performing model (Attention model on
foot) is comparable to radiologist F1 score on more chal-
lenging upper body extremities, such as the finger. Our
dataset was quite small, with only 320 training points per
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Figure 7: a). The baseline predicts probabilities of abnor-
mality in a distribution with mode of around 0.5. b). The
Attention model substantially spreads out predicted proba-
bilities, indicating that it makes more confident predictions.

extremity after removing training and validation sets. The
added difficulty of MIL, where a case might contain only
2 salient views out of twelve or more, compounded this
issue. As a result, our less successful models performed
worse than previous attempts at X-ray abnormality classifi-
cation. Furthermore, the F1 scores for our baseline under-
performed those achieved by the same model architecture
[9] (low of 0.792, high of 0.968), likely due to a combi-
nation of our substantially smaller data set and potentially
different scheduling and/or other optimizations.

These models show the possibility of strong abnormal-
ity classification performance on lower body extremities.
With more data per extremity and more compute, we be-
lieve that comparable results to the MURA paper would
be possible. There is also an issue of data cleanliness —
in the MURA paper, the median case contains fewer than
five views, whereas our dataset median case contained more
than ten views. This dilution of the signal as discussed
above constitutes a significant challenge in MIL.

Figure 8: LSTM saliency maps for images 2, 7 and 12
within one case. Decreasing intensity of salient pixels step-
ping backwards through case reveals highly sequential pro-
cessing of cases.

7. Conclusion

In this paper, we presented three distinct pooling meth-
ods that could be applied to the problem of MIL in medical
imaging. The baseline model, when compared with per-
formance of similar models on more complete datasets, il-
lustrates the relative difficulty of this lower extremity clas-
sification task. Comparing performance of the two novel
models — an Attention based model and a recurrent LSTM
model against the baseline, we find that Attention outper-
forms the baseline in F1 (except for on the knee dataset),
while LSTM outperforms the baseline in AUROC in all
extremities except for the knee. Future directions might
include improving the interpretability of models like the
LSTM, and tuning models like Attention to better gener-
alize.

As medical datasets become widely available, we believe
further inquiries into MIL techniques to be worth pursuing,
especially if models such as these are to be deployed in the
clinical setting.
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