
Applying Reinforcement Learning to
Packet Routing in Mesh Networks

George Horrell
Stanford University

ghorrell@stanford.edu

Eli Echt-Wilson
Stanford University

eliew@stanford.edu

Kevin Chang
Stanford University

kevchang@stanford.edu

Abstract

In this paper we explore reinforcement learning ap-
proaches for packet routing in mesh networks and sit-
uations where nodes do not have access to global net-
work information. We also implement extensions to Q-
routing in an effort to improve performance, including
packet dropping penalties and dual-reinforcement learn-
ing. We also propose a hybrid algorithm for transition-
ing standard protocols to reinforcement learning, mitigat-
ing the poor performance of the ”learning period” of Q-
routing. We find that reinforcement-learning techniques
successfully and consistently outperform standard routing
protocols for both static and dynamic mesh networks.

1. Introduction

Decentralized networks, such as mesh networks, are
becoming increasingly viable and attractive alternatives
to existing networks due to the increased connectivity of
devices, looming privacy concerns with highly central-
ized networks, and the sheer amount of latent and un-
used computing power available in everyday devices. Cur-
rent industrial applications being explored include Google
Loon [3] and Facebook’s ”Next Generation Data Net-
work”, while general applications include connecting iso-
lated locations, developing countries and swarms of intel-
ligent devices [4].

Routing packets through mesh networks is a difficult
problem since each node in the network only has informa-
tion about its directly-neighbored neighbors and there ex-
ists no central machine that has global information about
the network. In this paper, we explore using reinforcement
learning algorithms to ”learn” about the network topology
and make intelligent routing decisions under uncertainty.
The goal is to create a reinforcement learning algorithm
capable of outperforming standard routing protocols.

2. Modeling Mesh Networks and Reinforcement
Learning

For the purposes of this paper, we decided to model our
mesh networks using software-based simulations rather
than setting up a real mesh network with hardware com-
ponents. The software-based approach is preferable to set-
ting up a system of routers given our time and budget con-
straints. Nevertheless, we invested significant work into
making the model as reflective of a real mesh network as
possible.

Listed below are properties of mesh networks which
make them extremely suitable for reinforcement learning
(RL) based approaches to packet routing. When design-
ing our model, we kept the following unique properties of
mesh networks in mind.

1. Highly connected. Standard network topologies,
such as the internet, form a star where a small mi-
nority of centralized nodes handle the majority of
traffic and route packets to the rest of the network.
While the internet is strictly a mesh structure, it fol-
lows a power-law distribution where the vast ma-
jority of nodes have very few connections, allowing
routers placement at high-degree nodes to be a vi-
able mechanism for path-routing. The above does
not hold for most mesh networks such as those em-
ployed in Project Loon, or those that supply internet
to remote locations. These graphs can be modeled as
a Watts-Strogatz random graph [7] and possess rele-
vant ”small work qualities” with short average path
lengths and high clustering. Since there are a number
of short paths between nodes, we hope that our RL
approach will more accurately optimize for transmis-
sion time over number of hops.

2. Low-to-medium end hardware. ISPs and other cen-
tralized packet switching hubs use high throughput

1



hardware to power incredibly fast packet processing
and switching. In contrast, hardware for mesh net-
works is often less powerful, subject to strict con-
straints on power usage, size and heat output since the
packet routing hardware might be embedded in a bal-
loon, or running in a civilian’s house. Our model is
sensitive to over-loading specific nodes: algorithms
that consistently exploit certain routes will fare worse
than algorithms that distribute load. An well-tuned
RL algorithm is capable of more evenly distributing
load throughout the network.

3. High variability edge costs. Mesh networks com-
municate through a range of media, including radio,
infrared and wired connections. All of these media
have very different transmission speeds and can suf-
fer from high variability. This variability is a com-
pelling reason for why reinforcement learning is suit-
able for mesh network packet routing. Traditional
packet routing algorithms, such as RIP, compute a
shortest hop path but will fail to learn which edges are
consistently reliable. Reinforcement learning algo-
rithms can more accurately learn which edges should
be routinely exploited.

4. Node reliability. Within traditional star topology
networks (the internet) it is highly unlikely that high
throughput switches will go offline. These are indus-
trial machines that are relied upon to provide con-
nectivity to thousands of leaf devices. It is also un-
likely that new high-throughput non-leaf nodes will
be added to the network with high frequency. How-
ever, in a mesh network, it is much more likely that
nodes will both go online and offline regularly, and
with relatively high frequency. It is then critical that
the packet routing algorithm is capable of responding
to these changes quickly, something traditional algo-
rithms like RIP are not capable of doing well. How-
ever, reinforcement learning algorithms can continue
to adapt to changes within the network.

3. Baseline Algorithms

In order to assess the efficacy of our reinforcement
learning solutions, we implemented two baseline packet
routing algorithms that do not rely on the learning of net-
work parameters.

3.1. Random Routing

The first baseline algorithm that we implemented was
random routing. This algorithm selects a neighbour at ran-

dom from the current node and continues to make hops
through the network until the destination node is reached.
While this naive approach does not typically result in fast
transmission times, it does distribute load evenly through-
out the network.

3.2. Routing Information Protocol

Our second baseline algorithm is far more effective than
random routing, and is one of the most persistent routing
protocols in existence. Routing Information Protocol, or
RIP, relies on a table pre-computed by the Bellman-Ford
equation [2]. This protocol was used for the first gener-
ation of computer networking, ARPANET, and is still in
use today. For each node in the network i, a table T of
size n (where n is the number of nodes) is computed. If
we consider that the shortest path from node i to node j is
k1, k2, . . . , j, then:

Ti(j) = k1

Following this algorithm provides a shortest-hop path
from i to j, however it does not accurately account for
stochasticity in edge cost, and the other factors discussed
above. To improve on this naive algorithms for mesh net-
work packet routing, we explore reinforcement learning
approaches.

4. Reinforcement Learning Algorithms

4.1. Q-Routing Algorithm

The Q-routing algorithm that we started with uses the
Q-learning framework to make routing decisions at a node
based on routing information at the neighboring nodes [1].
The algorithm maintains a table of Q values which esti-
mate the quality (or approximate travel time) of the avail-
able neighboring nodes at a given node. We update the Q
values each time we send a packet to a neighboring node,
based on the travel time incurred by traversing the edge.
As the network routes more and more packets, it is able
to gradually approximate and improve global information
about the network. Additionally, it is able to react and
adapt to changes in the local network topology.

4.2. Vanilla Q-Routing

In vanilla Q-routing, we are sending each packet P
from a source node s to a destination node d. At each step
in the process, we route P from some node x to a neighbor-
ing node y. We can then approximate the time remaining
t for the packet with:

t = min
z∈N(y)

Qy(z, d)

2



with N(y) being the set of neighbors of node y. Given
this remaining time estimate t and the time spend travel-
ing from x to y (call this s, we can perform the following
incremental update for Qx:

Qx(y, d) = Qx(y, d) + α(t+ s+Qx(y, d))

where α is the learning rate hyperparameter.
Nodes in a mesh network occasionally drop packets,

which means that a packet traveling from node x to node y
fails to reach node y. We account for this in our Q-routing
algorithm by detecting when a packet is dropped from x to
y. If the packet is dropped, we revise our estimate of time
remaining to be the minimum travel time from the source
node s instead of y, since the packet will have to restart at
its source node:

t = min
z∈N(s)

Qs(z, d)

With this addition, the Q-routing algorithm should pe-
nalize nodes that drop packets more often and learn to
avoid nodes with higher drop rates.

In order to balance exploration and exploitation in the
Q-routing algorithm, we use an epsilon-greedy approach.
With probability ε = 0.05, we pick a random neighbor to
route a packet to from node x. With probability 1− ε, we
route the packet to the neighbor of x with the smallest Q
value (smallest estimated time remaining).

4.3. Dual Reinforcement Q-Routing

As an extension to vanilla Q-routing, we implemented
an extended version of Q-routing motivated by dual-
reinforcement learning, which was developed in the late
20th century for satellite communication systems. While
standard Q-routing performs forward exploration only
to update our table of estimated travel times, dual-
reinforcement Q-routing tries to learn good estimates
more quickly by also performing backward exploration.
This means that when we route a packet from node x to y,
we perform two updates of the Q table. The first update
is the standard Q-routing update (detailed above), which
improves the estimate of travel time for a packet going
from node x to the destination node through node y. For
the backward exploration update, we seek to improve the
estimate of travel time for a packet going backward from
node y to the source node through node x (since the edge
latency between pairs of nodes should be the same in both
directions). We first approximate the estimated time from
node x to the source node with:

tb = min
z∈N(x)

Qx(x, s)

with N(x) being the set of neighbors of node x. Given
this time estimate tb and the time spent traveling from x
to y (which we call sb), we then perform the backwards
exploration update for Qy:

Qy(x, s) = Qy(x, s) + αb(tb + sb +Qy(x, s))

with αb being the backwards learning rate. This algo-
rithm is intended to converge faster than vanilla Q-routing
by performing multiple Q-updates each time we route a
packet. [5]

4.4. Hybrid RIP / Q-Routing

Q-Learning noticeably suffers from performance degra-
dation in its learning phase. What we propose is to inter-
polate RIP routing and Q-Learning by relying more heav-
ily on RIP routing earlier in the learning period, and grad-
ually weaning off and relying on Q-Learning as Q-values
converge.

Let i indicate the current iteration in the Q-learning
phase, ε be the probability that we explore, and ω be some
iteration weighting factor. We will define πrandom as the
policy of randomly exploring neighbors, πRIP as the RIP
policy (following routing table), and πQ as the Q-learning
policy (finding neighbor with minimal Q). Further, let r
be a randomly generated number where r ∈ [0, 1] and c be
the current node.

πhybrid(c, i, r) =


πrandom(c), r < ε

πRIP (c), ε ≤ r < ω−i
ω (1− ε)

πQ(c), r ≥ ω−i
ω (1− ε)

5. Implementation

For every set of simulations, we initialize a mesh net-
work with specific node parameters and edge parameters
and a set number of packets with specific packet parame-
ters.

Importantly, the use of this network is persisted across
multiple simulations of different packet routing algo-
rithms. This ensures that networks behave similarly across
simulations while still retaining stochastic behavior.

For example, if an edge drops a packet in the run of one
packet routing algorithm, while it isn’t guaranteed to drop
a packet in the run of another packet routing algorithm on
the same network, it will guarantee packet dropping on
that edge with the same probability distribution.

Simulations of different packet routing algorithms are
then run on this network by sending groups of packets in
batches (2,000 at a time).

3



5.1. Edges

Each edge eij in the network is assigned a randomly
generated base weight µ which represents the average
transmission delay over the link - this ranges from 0ms
to 300ms. Every time the edge is traversed, we generate
a weight from the normal distribution (with σ = 5ms) as
follows:

lij = N(µ, 5)

Edges are also assigned a drop rate. Every time a packet
traverses the edge, it is dropped with probability dij .

dij = U(0, 0.05)

5.2. Packets

Each packet is generated with a source node and des-
tination node, and keeps track of its total time in transit
thus far, as well as a history of nodes its traversed as it’s
been routed through the network. For the purposes of our
simulation, the source node and destination node are never
droppable-nodes (explained in 5.3).

5.3. Network

Each network is initialized with some proportion of
nodes designated as ”constant-nodes” (generated using a
Watts-Strogatz model) and some proportion nodes desig-
nated as ”droppable-nodes”.

After each batch of packets is sent out and processed,
a droppable-node is selected and dropped (all its edges to
other nodes removed). For the purposes of our simula-
tions, it is guaranteed that none of the packets generated
have sources or destinations that are droppable-nodes.

Each network is then initialized with three parameters:

1. Number of Nodes. Number of nodes that are in the
network.

2. Droppable Node Proportion. Proportion of nodes
in the network that are droppable-nodes.

3. Droppable Node Connectivity. The percentage of
constant-nodes that each droppable-node will be con-
nected to. For example, a drop node connectivity
c = .5 means each droppable-node will have edges
to 50% of all constant-nodes.

5.4. Simulation Algorithm

Refer to https://github.com/kevhcha/
q-routing for codebase. Overview of implementation
in Algorithm 1.

Algorithm 1 Network Routing Algorithm

1: function PROCESSBATCH(batch)
2: for each pkt ∈ batch do
3: queues[pkt.src]← ENQUEUE(pkt)

4: while queues not empty do
5: for each node ∈ nodes do
6: PROCESSNODE(node)

7: function PROCESSNODE(node)
8: pkt← POP(queues[node])
9: next← ROUTEPACKET(pkt, node)

10: if packet.time ≤ TIME OUT then
11: queues[next]← ENQUEUE(pkt)

12: if queues[cur] empty then
13: DELETE(queues[cur])

14: function ROUTEPACKET(pkt, cur)
15: next← GETNEXT(cur)
16: pkt.time← pkt.time + edge latency
17: if edge drops packet then
18: pkt.dropped← true

return next

6. Results

6.1. Methodology

To measure the performance of our reinforcement
learning algorithms, we compare them against the base-
line random routing and RIP routing protocols. For each
algorithm, we measure the metrics of average transit time,
average path length, number of dropped packets, and num-
ber of timed-out packets.

6.2. Vanilla Q-Routing

We find that, with enough packets sent, Vanilla Q-
Learning performs consistently better than random routing
and RIP protocols both on static and dynamically chang-
ing networks (with and without dropping nodes).

In Fig. 1 and Fig. 2, we compare one iteration each
of RIP routing and Q-routing on the same static network
of 30 nodes and 500,000 packets without node dropping.
Notably, Vanilla Q-Routing outperforms RIP Router in
the limit, but performs dramatically worse while it is still
learning. Since the learning inefficiency is a one-time cost,
however, Vanilla Q-Learning will continue to outperform
RIP as the number of packets grows.

We see that by tuning our learning rates, we can de-
crease the duration of the inefficient learning period,
achieving convergence with a learning rate of .05 nearly
three times faster than with a learning rate of .09 (Fig. 3).

4

https://github.com/kevhcha/q-routing
https://github.com/kevhcha/q-routing


Fig. 1. RIP vs. Q-Routing, no dropped nodes.

RIP Q-Routing
Avg. Path Length 2.71 4.39
Avg. Transit Time 314.73 198.88
Timed Out Packets 0 0.00076
Dropped Packets 0.056 0.107

Fig. 2. Random vs. RIP vs. Q-Routing, no dropped nodes

Fig. 3. Vanilla Q-Learning with different learning rates.

6.3. Dynamic Networks

The advantages of Q-Routing really begin to shine in
more realistically-modeled networks, i.e. with dropped
nodes. As seen in Fig. 4 and Fig. 5, Vanilla Q-Routing
decreases transit time by nearly 27% as compared to RIP,
and over 200% reduction in time out rates.

This makes sense intuitively since RIP routing follows
a fixed policy derived from the initial network structure
without the ability of adapting policies to changes in the

Fig. 4. RIP v. Penalized Q-Routing v. Vanilla Q-Routing

network structure, such as dropped nodes.

RIP Vanilla Penal.
Path Length 3.623 3.721 3.729
Transit Time 705.124 508.977 505.071
Time Out Rate 0.046 0.002 0.001
Drop Rate 0.108 0.090 0.081

Fig. 5. RIP vs. Q-Routing with drop node penalty

As discussed earlier in 4.2, we can further optimize
Vanilla Q-Routing by introducing a penalty for dropping
nodes by rerouting packets back to their source node when
dropped. We see that this Penalized Q-Routing provides a
slight improvement over the Vanilla Q-Routing (Fig. 5).

6.4. Dual-Reinforcement Q-Routing

We find that, while dual-reinforcement Q-routing out-
performs the baseline RIP routing protocol, it converges
at the same rate and performs slightly worse than vanilla
Q-routing (Fig. 6).

6.5. Hybrid RIP / Q-Learning

In our tests, we found Hybrid RIP / Q-Learning to per-
form better than both RIP and Q-Routing, especially with
fewer number of packets. Notably, it provided the mini-
mum across all metrics: path length, transit time, time out
rate, and drop rate (Fig. 7 and Fig. 8).

5



Fig. 6. RIP v. Dual-Reinforcement Q v. Vanilla Q

RIP Penal. Hybrid
Path Length 4.19 6.34 3.77
Transit Time 457.08 395.50 312.58
Time Out Rate .0074 .012 .00038
Drop Rate .058 .076 .056

Fig. 7. RIP v. Penalized Q v. Hybrid Q

Fig. 8. RIP v. Penalized Q v. Hybrid Q

Conclusion

Our work considers and explores the viability of Q-
learning for use on mesh networks as a more performant
alternative to existing routing algorithms, and the prelimi-
nary results are promising. We have shown that Vanilla Q-
learning is a promising alternative to RIP routing, and that
with further modifications it can consistently outperform
RIP routing in a variety of scenarios. Q-learning-based al-
gorithms that are tailored to the constraints and behavior

of specific mesh networks will likely perform even better.
Interesting future work include considering better inter-

polation mechanisms between Q-learning and RIP poli-
cies, extending to incorporate predictive Q-routing [6],
and more holistic and accurate mesh network models.

Contributions and Acknowledgements

George: Led implementation. Optimized model to per-
mit real testing, extended it to include packet load and
dynamic graph structure. Implemented random routing,
RIP-routing and Q-routing.

Eli: Led write-ups, including proposal, update and fi-
nal paper. Wrote implementation of parallelized packet
routing simulation, including re-routing dropped packets.
Implemented dual-reinforcement Q-routing and penaliz-
ing packet dropping in Q-routing.

Kevin: Designed and implemented packet and mesh
network architecture (modeling drop rate, latency, and
time outs). Implemented random routing and RIP / Q-
routing hybrid. Extended implementation to allow for eas-
ier data collection across multiple simulations.

References
[1] J. A. Boyan and M. L. Littman. Packet routing in dynam-

ically changing networks: A reinforcement learning ap-
proach. In Advances in neural information processing sys-
tems, pages 671–678, 1994.

[2] C. L. Hedrick. Routing information protocol. Technical
report, 1988.

[3] S. Katikala. Google project loon. InSight: Rivier Academic
Journal, 10(2):1–6, 2014.

[4] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard. The
importance of being opportunistic: Practical network cod-
ing for wireless environments. 2005.

[5] S. Kumar and R. Miikkulainen. Dual reinforcement q-
routing: An on-line adaptive routing algorithm. Smart En-
gineering Systems: Neural Networks, Fuzzy Logic, Data
Mining, and Evolutionary Programming, 7, 1997.

[6] S. P. M. Choi and D.-Y. Yeung. Predictive q-routing: A
memory-based reinforcement learning approach to adaptive
traffic control. 8, 12 1999.

[7] D. J. Watts and S. H. Strogatz. Collective dynamics of
small-worldnetworks. nature, 393(6684):440, 1998.

6


